RESEARCH ARTICLE

Impact of Anesthesia and Euthanasia on Metabolomics of Mammalian Tissues: Studies in a C57BL/6J Mouse Model

Katherine A. Overmyer¹, Chanisa Thonusin¹, Nathan R. Qi², Charles F. Burant², Charles R. Evans²*

- 1 Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America, 2 Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- * chevans@umich.edu

PLOS ONE DOI: 10.1371/journal.pone.0117232 February 6, 2015 Presented by Katie Gibbs

Sample Preparation is Key

- Sample extraction and instrumental analysis methods are well documented in metabolomics.
- Understanding the changes in metabolome in response to method of sample collection is limited.
- How might mode of anesthesia or euthanasia affect metabolite profiles of collected tissues?

Objective of study

- Systematically examine the effect of commonly used methods of anesthesia and euthanasia on metabolome of tissues in male C57BL/6J mice
- Untargeted and targeted profiling of polar metabolites using HILIC-ESI-MS

Animal Model C57BL/6J mice

- Male C57BL/6J mice from Jackson Labs
 - 20 weeks of age
 - ~27 g body weight
 - 12:12 light:dark
 - Standard chow and water ad libitum
 - Fasted 5 hrs before tissue collection

C57BL/6J mice n = 8 mice per mode

1) Perform 6 different modes of anesthesia/euthanasia

Mode	Method	Time to collect
Euthanasia	Cervical Dislocation	10 s to death
Euthanasia	100% Carbon dioxide	2.5 min to death
Euthanasia	Isoflurane overdose	2 min to death
Anesthesia	Continuous isoflurane 4% to 2%	1.5 min
Anesthesia	Ketamine (100mg/mL) IP 120 mg/kg dose	20 min
Anesthesia	Pentobarbital (50mg/mL) IP 60mg/kg dose	15 min

6) LC-MS

Chromatographic method: HILIC-anion exchange separation (polar compounds)

Column: Phenomenex Luna 3µ NH2 column

2.1 x 150 mm

Mobile Phase A: acetonitrile

Mobile Phase B: 5 mM ammonium acetate pH 9.9 Gradient: 0 min = linear from 20 to 80% B

15 min = 100% B hold 3 min 18.1 min = return to 20% B

30 min = stop

Injection volume: 25 μL

Flow rate: 0.25 mL/min; column at 25°C, auto sampler 4°C

6) LC-MS

Time of Flight (TOF): High resolution mass spec

Agilent 6220 TOF MS

Agilent 1200 LC System

MS: Electrospray ionization in negative ion mode

Full scan: m/z range 50 – 1200 Da

Data acquisition rate: 1 scan/sec

Source parameters: drying gas temp 350°C, flow rate 10L/min

nebulizer pressure 30 psig capillary voltage 3500 V

Untargeted metabolite screening: data pre-processing

7) Targeted & untargeted metabolomics data analysis

- Raw LC-MS data converted from Agilent.d format to mzXML format and imported to MZmine 2.10
- 2. Mass detection: centroid mass detector noise level at 1.0E3
- 3. Chromatogram builder to generate peaks min time span 0.2 min, height 1.0E3, m/z tolerance 0.002 m/z or 20 ppm
- 4. Chromatograms smoothed
 - filter width 5

Untargeted metabolite screening: data pre-processing

5. Chromatogram deconvolution metabolomics data analysis performed using noise amplitude algorithm

- min peak height 5.0E3, peak duration 0 – 25 min, noise amplitude 2.0E3

- 6. Isotopic peaks grouped
 - m/z tolerance of 20 ppm
 - Retention time tolerance (RTT) 0.1 min
 - max charge of 2
 - representative isotope set as most intense
- 7. Retention time normalization
 - m/z tolerance of 20 ppm
 - RTT 1.0 min
 - min standard intensity 1.0E4

Untargeted metabolite screening: data pre-processing

7) Targeted & untargeted metabolomics data analysis

- 8. Chromatograms aligned into peak list
 - join aligner
 - m/z tolerance of 0.005 m/z or 50 ppm
 - weight for m/z 50
 - RTT 1.5 min with weight of 50
- 9. Gap filling with peak finder algorithm
 - intensity tolerance 25%
 - m/z tolerance 20 ppm
 - RTT 1.0 min and RT correction enabled
- 10. Duplicate peak filter applied
 - remove peaks w/in m/z tolerance of 0.01 m/z or 50ppm
 - RTT 0.5 min

Untargeted metabolite screening: data pre-processing

7) Targeted & untargeted metabolomics data analysis

- 11. Peak list rows filter
 - only peaks in 75% of all samples
 - 1 peak min per isotope pattern
 - m/z range set automatically
 - RT range 1.0 25.0 min
 - peak duration 0.1 2.0 min
- 12. Visual inspection of peak shapes
 - artifacts discarded

Untargeted metabolite screening: statistical analysis

7) Targeted & untargeted metabolomics data analysis

Metabolanalyst

- Upload peak intensity table
- Filtered by interquartile range
- Normalized by median intensity
- Log transformed
- Principal component analysis (PCA)
- Partial least squares discriminant analysis (PLS-DA)

Targeted metabolite analysis

7) Targeted & untargeted metabolomics data analysis

Agilent MassHunter Quantitative Analysis software

- Compared accurate mass and retention time with that of authentic standards analyzed using same method
- Relative quantitation: peak area
- Absolute quantitation: selected metabolites; peak areas measured relative to the peak areas of 13Clabeled internal standards
 - six-point calibration curves for standards

Untargeted Metabolomics

- PCA
- PLS-DA

Untargeted Metabolomics

- Variable importance in projection (VIP) scores
 - Based on PLS-DA classification
 - Higher scores contribute to greater class separation
- Searched m/z values of top features against Human Metabolome Database (HMDB)
 - Mass accuracy of 20 ppm with top 10 listed Table 1

Putative matches

- Skeletal muscle
 - Glycolytic metabolites, phosphocreatinine, phosphocreatine
- Liver and adipose tissue
 - Lipid species
- Common across multiple tissues:
 - Succinic acid, glycerol-3-phosphate, inosine monophosphate, ceramide phosphates
- No validation of untargeted approach

Targeted approach

- 112 known polar metabolites
 - Quantitated by peak area
 - Accurate mass and retention time compared to authentic standards previously run
- Absolute concentrations of 21 metabolites that matched 13C-labeled internal standards
- "...data consistent with the effects of hypoxia brought about by the absence of respiration and blood circulation in euthanized animals."

Glycolysis and gluconeogenesis - higher lactate levels for euthanized mice - hexose phosphate and glycerol 3-phosphate A В Skeletal muscle Liver Hexose phosphate Hexose phosphate Glycerol 3-phosphate Peak area (relative to CD) Peak area (relative to CD) Glycerol 3-phosphate 150,00 150,00 150.Cont *** Figure 5 Metabolites identified by accurate mass and retention time compared to known standards previously run on the HILIC-LC-MS platform

Conclusions

- Results consistent with literature on the effects of anesthesia and/or euthanasia on rodent tissue metabolism.
- Can we believe the data?
 - Putative metabolites from untargeted approach
 - No validation of putative metabolites
 - Targeted approach used in lieu of validation?
 - Many metabolites identified based on previously run standards.